
Experimental optical computing of complex
vector convolution with twisted light
Ling Hong, Haoxu Guo, Xiaodong Qiu, Fei Lin, Wuhong Zhang ,* and Lixiang Chen*
Xiamen University, Department of Physics, Xiamen, China

Abstract.Orbital angular momentum (OAM), emerging as an inherently high-dimensional property of photons,
has boosted information capacity in optical communications. However, the potential of OAM in optical
computing remains almost unexplored. Here, we present a highly efficient optical computing protocol for
complex vector convolution with the superposition of high-dimensional OAM eigenmodes. We used two
cascaded spatial light modulators to prepare suitable OAM superpositions to encode two complex vectors.
Then, a deep-learning strategy is devised to decode the complex OAM spectrum, thus accomplishing the
optical convolution task. In our experiment, we succeed in demonstrating 7-, 9-, and 11-dimensional
complex vector convolutions, in which an average proximity better than 95% and a mean relative error <6%
are achieved. Our present scheme can be extended to incorporate other degrees of freedom for a more
versatile optical computing in the high-dimensional Hilbert space.
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1 Introduction
With the exponential growth of daily data generation in
today’s world, the exploration, utilization, and analysis of data
require huge energy-efficient computing power.1,2 However, the
demand for computing power has far exceeded the supply of
Moore’s Law, and electronic architecture faces fundamental lim-
itations.3,4 Processors based on traditional electrical methods
have hit unsustainable performance growth bottlenecks.5 The in-
dustry needs a new technology that can embark on a new jour-
ney. Optical computing makes good use of the characteristics
of light, such as inherent parallelism, strong anti-interference,
and ultrahigh propagation speeds, which show great superiority
in processing massive amounts of data and information in
parallel.6–8 Optical interconnects have been already used in prac-
tice to help remove the electronic bottlenecks. All kinds of in-
dications show that the photon is the optimal carrier for the next
generation of computing power in the post-Moore era.

Among the types of the optical computation, matrix
calculation is the most widely used and indispensable basic

mathematical operation in information processing. In recent
years, the study of photonic matrix calculation has developed
rapidly. The theoretical model of optical vector–matrix multi-
plier, an important step in optical calculation, could be traced
back to the work by Goodman in 1978.9 Then, various photonic
devices were successfully used in optical matrix calculations,
such as the plane light-conversion method,10–14 Mach–Zehnder
interferometric method,15,16 and wavelength division multiplex-
ing method.17,18 The first two methods used the coherent light
and operated in the whole complex field. Conventional digital
electronic computing platforms are incapable of executing truly
complex valued representations and operations, while the wave-
length division multiplexing method is incoherent superposition
of the different wavelengths and is routinely used for real num-
ber matrices.5,19 As photonic networks excel in matrix vector
manipulation, artificial intelligence and optical computing are
being combined to develop intelligent photonic processors and
photon accelerators.20–25 In particular, based on optical neural
networks, an interesting universal optical vector convolution
accelerator has been proposed to realize image recognition.25

It is noted that convolution is a useful operation that can be
used to blur or sharpen optical images, which plays a crucial
role in optical image processing.26 Besides, traditional digital
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computing platforms show a significant slowdown in imple-
menting algorithms using complex values. Complex numbers
are represented by two real numbers, thereby dramatically in-
creasing the source cost of computation.27 However, the ability
of optical computation to perform complex-valued arithmetic
makes it an excellent tool for solving the digital computing
problem. For example, Zhang et al. devised an optical neural
chip that implements truly complex-valued neural networks
by modulating the phase and magnitude of the light beam.23

To date, the multiple dimensions of light, such as optical wave-
length, time, phase, and magnitude, have been fully explored to
implement optical vector convolution. It was Allen and cowork-
ers who recognized that the Laguerre–Gaussian (LG) beams
with a helical phase front of expðilϕÞ carrying a well-defined
orbital angular momentum (OAM) of lℏ per photon,28 where ϕ
is the azimuthal angle and l is the OAM quantum number.
Because l is an integer, the OAM state-space is theoretically
unbounded. This provides a promising playground for a variety
of applications both in the classical and quantum realms.29–31

However, photonic OAM, as the inherently high-dimensional
degree of freedom of photons, remains relatively unexplored in
optical computing.

In this paper, we present an effective optical computing pro-
tocol for complex vector convolution using coherent superpo-
sitions of high-dimensional OAM eigenmodes. Benefiting
from the one-to-one mapping relation between OAM eigen-
modes and vector elements, our protocol allows the computing
results of complex vector convolution to be just the specific
OAM spectrum of output light field. In our experiment, we
use two cascaded spatial light modulators (SLMs) to prepare
suitable OAM superpositions to encode two complex vectors
and devise deep-learning strategy with simple-aperture diffrac-
tion to measure the complex-valued OAM spectrum, thus
accomplishing the optical convolution task. In comparison
with other schemes using optical interferometric methods,
for complex arithmetic in phase and magnitude, the OAM
needs no optical interferometer such that it may robust for
implementing complex calculation tasks. In addition, using
a phase triangular aperture, we can extract the OAM com-
plex-valued spectrum from the diffraction pattern in the output
port to verify our convolution calculation. Our work clearly
demonstrates that the OAM can be an alternative path to
implement the complex vector convolution. All the classical
linear physical dimensions of light can be controlled independ-
ently at the same time. Hence, the combination of multiple
degrees of freedom can achieve richer optical operation and
may prove valuable tools toward practical optical information
processing.

2 Methods

2.1 Theory

Convolution is an important operation in signal and image
processing. It is defined as the integral of the product of the
two functions after one is reversed and shifted. Considering
two vectors of N dimensions, A ¼ ½a1; a2;…; aN � and
B ¼ ½b1; b2;…; bN �, their convolution leads to a third vector
C ¼ ½c1; c2;…; c2N−1�, where

ck ¼
X

nþm−1¼k

anbm; k ¼ 1; 2; 3;…; 2N − 1: (1)

Benefiting from the one-to-one mapping relation between
OAM eigenmodes and vector elements, we show that in our
protocol the computing results of complex vector convolution
may just be the specific OAM spectrum of the output light field.
In order to clearly demonstrate our experimental principle, the
process of five-dimensional OAM states vector convolution is
shown in Fig. 1. Two OAM superposition states, ψAðr; θÞ ¼P

nanElnðrÞ expðilnθÞ and ψBðr; θÞ ¼
P

mbmElmðrÞ expðilmθÞ,
are composed of five different OAM modes with ln∕lm ∈
f−2;−1; 0; 1; 2g. Each OAM mode carries weight an or bm,
corresponding to the OAM spectrum, that can be a complex
number to realize the encoding of the two input vectors
A ¼ ½a1; a2; a3; a4; a5� and B ¼ ½b1; b2; b3; b4; b5�. Then, by
multiplying the two light fields, the OAM spectrum is
redistributed to obtain the output light field ψCðr; θÞ ¼
ψAðr; θÞψBðr; θÞ. Of particular interest is that the vector
C formed by the coefficients of the OAM superposition
state ψCðr; θÞ ¼

P
kckElkðrÞ expðilkθÞ with lk ∈ f−4;−3;

−2;−1; 0; 1; 2; 3; 4g is exactly the convolution of A and B vec-
tors as described by Eq. (1). Eliði ¼ n;m; kÞ represents the am-
plitude of the beam associated with li, which could be different
mode structures, such as LG modes LGl

p with the radial index
p.32 To keep the integrals of overlap between different modes
constant, in our case, we set all the amplitude distributions to
the same fixed mode E, which is independent of li. Such a
consideration is similar to a perfect vortex.33,34 In particular,
the above process is a one-to-one mapping relation between
OAM and vector elements, which does not include algorithms
and just uses the transmission property of the light field. Next,
we need to extract the OAM complex-valued spectrum C from
the output light field ψCðr; θÞ to verify our convolution calcula-
tion. Traditional methods for obtaining an OAM spectrum
are mainly through spatial separation or projection detection
of different OAM modes, such as cascade Mach–Zehnder
interferometers,35,36 coordinate transformation,37,38 digital spiral
imaging,39,40 and multiplane light conversion.41 A concise yet
efficient method for precisely and completely reconstructing a
high-dimensional OAM complex-valued spectrum remains an
open challenge, owing to the difficulties of performing cross-
talk-free separation and projection of high-dimensional OAM

Fig. 1 The schematic diagram of the optical complex vector con-
volution C ¼ A � B, based on five-dimensional orbital-angular-
momentum state vector.
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superposition. In our case, we consider detecting the OAM
complex value spectrum without separating each OAM state.
Inspired by Hickmann et al., who used a triangular aperture
to reveal the topological charge of OAM directly and simply
by the diffraction pattern,42 we have recently performed the
reconstruction of the OAM complex value spectrum via the ma-
chine-learning-assisted recognition of the diffraction pattern.43

Here, we devise deep-learning strategy with simple-aperture
diffraction to measure the complex-valued OAM spectrum, thus
accomplishing the optical convolution task. Our network con-
tains two paths, trained to obtain the normalized OAM state with
the mode weight Ck ¼ ckffiffiffiffiffiffiffiffiffiffiffiffiffiP

k
c�kck

p and the total strength of the

OAM state coefficients
P

kc
�
kck, respectively. Then, the square

root of the latter is multiplied by the former as the final output,
and the target state ψCðr; θÞwith the modeweight ck is predicted.
It should be noted that, unlike the previous work43 using an in-
tensity-only aperture, in our case, we need a phase-only aperture
for diffraction to avoid the loss of intensity information due to
IC ∝

P
kc

�
kck. In addition, our neural network contains two

paths, and both based on the residual structure with a regression
output, but different in the definition of the loss function. The loss
function in path 1 is defined as L1 ¼ 1 − F, where fidelity F ¼
½Pk ReðC�

P;kCT;kÞ�2 þ ½Pk ImðC�
P;kCT;kÞ�2 is usually employed

to evaluate the similarity between normalized state used for train-
ing with the kth complex-valued amplitude CT;k and normalized
predicted state with the kth complex-valued amplitude CP;k. With
the decrease of L1, the network gradually finds the mapping be-
tween the diffraction pattern and the normalized OAM state and
achieves the ability to predict the normalized OAM state vector
C∕jCj. The loss function in path 2 is defined as

L2 ¼
����

P
kc

�
T;kcT;k −

P
kc

�
P;kcP;kP

kc
�
P;kcP;k

����; (2)

where cT;k and cP;k represent the kth mode weight of OAM state
ψCðr; θÞ, which are used to train the network and are predicted by
the network, respectively. In this regard, L2 is used to evaluate the
deviation of the total strength of the OAM state coefficients. In
this path, we can get the magnitude squared of state vector jCj2.
From C∕jCj predicted by the two paths, we can easily get our
desired vector C as the final output.

2.2 Experimental Setup

The experimental setup is shown in Fig. 2. The desired mode
ψAðr; θÞ is encoded into the computer-generated holographic
mask through complex amplitude modulation of the SLM1. The
hologram addressed by the SLM1 is given by32 Φðr; θÞSLM ¼
½Φðr; θÞDesired þΦðr; θÞLinear�mod 2π × sinc2½1 − πIðr; θÞDesired�,
where Φðr; θÞDesired ¼ arg½ψAðr; θÞ� and Iðr; θÞDesired ¼
jψAðr; θÞj2 are the desired phase and intensity distributions,
respectively, and Φðr; θÞLinear is the phase of the linear grating.
With a 4f system consisting of two lenses L1 and L2
(f1 ¼ 200 mm and f2 ¼ 200 mm), a same-sized image of
the OAM superposition state ψAðr; θÞ is projected onto
SLM2 carrying ψBðr; θÞ. Subsequently, another 4f optical
system consisting of two lenses L3 and L4 (f3 ¼ 150 mm
and f4 ¼ 250 mm) filter out our desired mode ψCðr; θÞ ¼
ψAðr; θÞψBðr; θÞ. In the aforementioned process, we have suc-
cessfully achieved the encoding input of vectors A and B,

resulting in the OAM state ψCðr; θÞ, which carries all the infor-
mation of the convolution result vector C of vectors A and B. In
order to realize the full reconstruction of OAM complex-valued
spectrum C, here we prepare a phase triangular object42 to break
the OAM conjugate symmetry, as shown in the mask of Fig. 2.
The triangular area is π, while the other areas are 0. Diffraction
by a phase-type object will not influence the total light intensity
of the input field. Then, through lens L5, the diffraction pattern
after the object can be obtained. The diffraction patterns re-
corded by the CCD camera with a resolution of 1024 × 1024
are appropriately cropped and downsampled to a resolution
of 64 × 64 to match the input parameters of the residual neural
network. With the trained residual neural network, the OAM
complex-valued spectrum can be obtained from just one
CCD-captured diffraction image. In this process, we overcome
the problem of indistinguishable intensity patterns between con-
jugate superposition states through simple-aperture diffraction,
thus unlocking the full complex value spectrum reconstruction
based on deep-learning strategy via single-shot measurement.

2.3 Residual Neural Network

We resize the intensity distributions to 64 × 64 pixels as the in-
put path 1 and path 2. The structure of ResNet is shown by
Fig. 3. One 38-layer ResNet is used to analyze the relationship
between the normalized OAM state coefficients and the diffrac-
tion patterns in path 1, and another 38-layer ResNet is used to
analyze the relationship between the total strength of the OAM
state coefficients and the diffraction patterns in path 2. A
38-layer ResNet contains 37 convolutional layers with rectified
linear unit (ReLU) activation and a fully connected layer. After
the first convolution layer with 64 3 × 3 filters and the average
pooling operation, the data are compressed to a feature map of
size 32 × 32 × 64. Then, the input successively passes through
three stages with 64, 128, and 256 filters, respectively. Each
stage contains six residual blocks, each of which consists of
two 3 × 3 convolutional layers and an extra shortcut connection.
Convolution with a stride of 2 is used for downsampling be-
tween stages. The final stage outputs a feature map of size
8 × 8 × 256. Subsequently, a global average pooling operation
compresses the data to a feature map of size 1 × 1 × 256. The
network ends in a fully connected layer and regression. Here,
we transform the original ResNet into a regression network by

Fig. 2 Schematic of experimental layout for optical computing of
complex vector convolution based on OAM eigenstates. HWP,
half wave plate; SLM, spatial light modulator; L1, L2, L3, L4,
L5, lenses; Mask, a phase triangular object; CCD, camera.
Inset, holographic example of encoded complex vector with four
OAM states in SLM1 and SLM2.
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replacing the classification output with a regression one. In par-
ticular, the fidelity between OAM states is adopted as the loss
functions in machine learning, rather than mean absolute error
or mean square error in path 1. The loss function of the other
path is defined in Eq. (2). Finally, we combine the output of
the two paths as the final output to obtain OAM complex-valued
spectrum. In the experiment, we obtained 99,999 diffraction
patterns. Among them, we selected 80% for training, 10% for
validating, and 10% for testing our neural network. Using
a commercial consumer-grade computer [GeForce RTX 3060
Laptop Processing Unit GPU and Intel(R) Core(TM) i7-
10870H CPU @ 2.20 GHz and 16 GB of RAM, running a
Windows 11 operating system, Microsoft], we took roughly
4.5 h to complete the training with 60 iterations. With the trained
network, we only needed ∼130 ms to reconstruct the OAM
spectrum corresponding to a new input diffraction pattern.

It should be noted that the neural network in our work, which
assisted in obtaining the entire complex-valued spectrum of
OAM, made the process seem more complex than simply per-
forming convolutions through digital computation. We can use
other methods to solve this problem. For example, using the
multiplane diffraction methods that have successfully achieved
spatial separation of high-dimensional OAM,41 our approach
toward all-optical computation processing and information
extraction based on OAM convolution operation is extremely
promising. However, the above method sacrifices phase infor-
mation during the extraction process and only extracts intensity
information. To showcase the principal verification of our work
better and more comprehensively, we utilize the neural networks
to assist in extracting all information from the complex spectrum
of the OAM. We believe that an all-optical sorter for high-
dimensional OAM modes, extracting both amplitude and phase
information, should be possible soon, which deserves our fur-
ther research.

3 Results
At the beginning of the experiment, we randomly generated
99,999 groups of seven-dimensional complex vectors as input
data and realized complex vector convolution through the

experimental device mentioned above. Then, we obtained
99,999 diffraction patterns. Among them, we selected 80%
for training, 10% for validating, and 10% for testing our neural
network. The test set contains 9999 input patterns in total, and
9999 groups of convolution results were predicted by the trained
network. Taking a set of them as a display, the convolution result
C of input vectors A and B is obtained by our experimental
setup, as shown in Fig. 4. The pentagram points in the bar
are the experimental predicted results. Clearly, the experimental
prediction results agree well with the theoretical values, show-
casing the ability of optical complex vector–vector convolution.

To quantitatively assess the accuracy of our optical convolu-
tion system, we calculate proximity S and relative error
Err between the theoretical output vector C and the experimen-
tal predicted vector Cp. Here, the proximity and relative error

are defined as S ¼ j C·Cp

jCjjCpj j
2 and Err ¼ j jCj2−jCpj2

jCj2 j. The unit

proximity S and the zero relative error Err indicate the perfect
convolution results performed by our system. The histogram of
Figs. 5(a) and 5(b) shows the statistical distribution of the prox-
imity and relative error calculated from the 9999 experimental
images, corresponding to the convolution of seven-dimensional
vectors. It is found to be the average proximity Savg ∼ 0.98
with standard deviation ∼0.02, and the mean relative error
Errmean ∼ 0.04 with standard deviation ∼0.03.

Moreover, the greater advantage of the OAM over other
photonic degrees of freedom is the inherent high-dimensional
property, which can be used to encode boundless information
in a single photon. To further show the ability of the OAM in
the computational area, we also experimentally verify the 9- and
11-dimensional OAM state vector convolution, respectively.
And we also obtained the average proximity and the mean rel-
ative error as shown in Table 1. From Table 1, as the dimension-
ality of the state increases, the average proximity decreases, and
the mean relative error increases a little bit. The reason is that the
experimental conditions are not ideal, such as the imperfect dif-
fraction efficiency of space light modulator with the increase of
the OAM dimension, which are incorporated into the training
process to set the reconstruction of the OAM complex-valued
spectrum. In spite of the imperfect experimental conditions,

Fig. 3 Architecture of the residual neural network.
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we can see that all of the average proximity (nearly above 95%)
is a good value for vector–vector convolution results.23 In
addition, compared with the current optical computing tech-
niques, such as the experimental accuracy of handwritten digit
differentiation, which is about 93.39% when using an all-optical
diffractive deep neural network architecture,44 we believe the
average fidelity of 95% attains the level necessary for practical
application. For OAM optical communications,45 the average
fidelity of 95% is also considered to be a high level of accuracy.

In our proposed scheme of complex vector convolution based
on OAM, the unbounded nature of the OAM state space theo-
retically allows for the construction of vectors with an infinite
number of dimensions. However, the purity of the OAM super-
position state preparation and the accuracy of the OAM complex

spectrum reconstruction are the main factors affecting the upper
limit of the computable vector dimensionality for convolution
operations. Further optimization of the system can be consid-
ered from the two aspects of OAM generation and detection,
such as modifying the diffraction efficiency curve of the
SLM46 or improving the accuracy of the image input to the
network.

4 Conclusion
We have proposed, both theoretically and experimentally, a
novel approach to computing complex vector convolution based
on OAM eigenstates, benefiting from the one-to-one mapping
relation between OAM and vector elements through the pro-
grammable SLM. To verify the results of the convolution cal-
culation, an interesting deep-learning-assisted platform has been
demonstrated. Our results for 7-, 9-, and 11-dimensional OAM
state vector convolutions confirm the good performance of the
proposed system and clearly demonstrate the OAM can be an
alternative path toward implementing the complex vector con-
volution. It should be noted that our proposed scheme can
load the transmission vectors directly without any algorithms.
So, it is possible to extend this scheme to two-dimensional
matrices or higher-dimensional operations by expanding two
dimensions as one-dimensional vectors with blank spacings or
using vortex arrays. Therefore, the photon’s OAM can be
a universal and potential tool for many classical and quantum
computing operating systems and also can be a key building
block to process complex computing tasks. Since all the
classical linear physical dimensions of light can be controlled
independently at the same time, the combination of multiple
degrees of freedom can achieve richer optical operation and
may prove to be valuable tools toward practical optical informa-
tion processing.

Data Availability
The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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